Compact 2-transnormal hypersurface in a Kaehler manifold of constant holomorphic sectional curvature
نویسندگان
چکیده
منابع مشابه
Para-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملConformal Curvature Flows on Compact Manifold of Negative Yamabe Constant
Abstract. We study some conformal curvature flows related to prescribed curvature problems on a smooth compact Riemannian manifold (M, g0) with or without boundary, which is of negative (generalized) Yamabe constant, including scalar curvature flow and conformal mean curvature flow. Using such flows, we show that there exists a unique conformal metric of g0 such that its scalar curvature in the...
متن کاملA compact symmetric symplectic non-Kaehler manifold dg-ga/9601012
In this paper I construct, using off the shelf components, a compact symplectic manifold with a non-trivial Hamiltonian circle action that admits no Kaehler structure. The non-triviality of the action is guaranteed by the existence of an isolated fixed point. The motivation for this work comes from the program of classification of Hamiltonian group actions. The Audin-Ahara-Hattori-Karshon class...
متن کاملStrictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملSpectral Geometry and the Kaehler Condition for Hermitian Manifolds with Boundary
Let (M, g, J) be a compact Hermitian manifold with a smooth boundary. Let ∆p,B and ⊓ ⊔p,B be the realizations of the real and complex Laplacians on p forms with either Dirichlet or Neumann boundary conditions. We generalize previous results in the closed setting to show that (M, g, J) is Kaehler if and only if Spec(∆p,B) = Spec(2 ⊓ ⊔p,B) for p = 0, 1. We also give a characterization of manifold...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 1986
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496160387